Lesson Plans 2024-25 odd semester

Name of the Assistant professor-DrMeenu Gupta Subject-Analytical Mechanics and Calculus of Variations

Class- M.Sc. Mathematics 3rdsem Paper code- MM-502

Date	Topics
August	Unit-1
1st week	Motivating problems of calculus of variations: of shortest distance,
2 nd week	Brachistochrone problem
3 rd week	Minimum surface revolution,
	Geodesic
4 th week	Isoperimetric problem
	Fundamental Lemma of calculus of variation.
5 th week	Euler's equation for one dependent function of one and several independent variables, and its generalization to:
	(i) Functional depending on 'n' dependent functions
	(ii) Functional depending on higher order derivatives.
September	Variational derivative
1st week	Invariance of Euler's equations
	Natural boundary conditions and transition conditions.
	Conditional extremum under geometric constraints and under integral constraints.
2 nd week	Unit 2
	Free and constrained systems.
	constraints and their classification
3 rd week	Generalised coordinates.
	Scleronomic and Rheonomic systems
	Generalized Potential, Possible and virtual displacements, ideal constraints.

4 th week	Holonomic and non Holonomic system
	Lagrange's equations of first kind
	Principle of virtual displacements D'Alembert's principle
	Holonomic Systems independent coordinates

October	generalized forces
1st week	Lagrange's equations of second kind.
	Uniqueness of solutions.
	Unit-3
2 nd week	Theorem on variation of total Energy
	Potential, Gyroscopic and dissipative forces.
3 rd week	Lagrange's equations for potential forces equation for conservative fields.
	Hamilton's variables.
	Donkin's theorem.
4 th week	Hamilton canonical equations
	Routh's equations.
	Cyclic coordinates Poisson's Bracket
November	Poisson's Identity, Jacobi-Poisson theorem
1st week	Hamilton's Principle, second form of Hamilton's principle.
	Poincare-Carton integral invariant, Whittaker's equations, Jacobi's equations.
	Principle of least action,
2 nd week	UNIT -4
	Hamilton Jacobi's equations, Canonical transformations, free canonical transformations
	Jacobi theorem, Method for solving Hamilton-Jacobi equation.
3 rd week	Testing the Canonical character of a transformation, Lagrange brackets.
	Simplicial nature of the Jacobian matrix of a canonical-transformations
	Invariance of Lagrange's brackets.
	Poisson brackets under canonical transformations